Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 17(10): 1084-1092, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34294896

RESUMO

HUWE1 is a universal quality-control E3 ligase that marks diverse client proteins for proteasomal degradation. Although the giant HECT enzyme is an essential component of the ubiquitin-proteasome system closely linked with severe human diseases, its molecular mechanism is little understood. Here, we present the crystal structure of Nematocida HUWE1, revealing how a single E3 enzyme has specificity for a multitude of unrelated substrates. The protein adopts a remarkable snake-like structure, where the C-terminal HECT domain heads an extended alpha-solenoid body that coils in on itself and houses various protein-protein interaction modules. Our integrative structural analysis shows that this ring structure is highly dynamic, enabling the flexible HECT domain to reach protein targets presented by the various acceptor sites. Together, our data demonstrate how HUWE1 is regulated by its unique structure, adapting a promiscuous E3 ligase to selectively target unassembled orphan proteins.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Microsporídios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas Fúngicas , Insetos , Microsporídios/genética , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
2.
Elife ; 102021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34142657

RESUMO

The linear ubiquitin chain assembly complex (LUBAC) is the only known ubiquitin ligase for linear/Met1-linked ubiquitin chain formation. One of the LUBAC components, heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L), was recently shown to catalyse oxyester bond formation between ubiquitin and some substrates. However, oxyester bond formation in the context of LUBAC has not been directly observed. Here, we present the first 3D reconstruction of human LUBAC obtained by electron microscopy and report its generation of heterotypic ubiquitin chains containing linear linkages with oxyester-linked branches. We found that this event depends on HOIL-1L catalytic activity. By cross-linking mass spectrometry showing proximity between the catalytic RING-in-between-RING (RBR) domains, a coordinated ubiquitin relay mechanism between the HOIL-1-interacting protein (HOIP) and HOIL-1L ligases is suggested. In mouse embryonic fibroblasts, these heterotypic chains were induced by TNF, which is reduced in cells expressing an HOIL-1L catalytic inactive mutant. In conclusion, we demonstrate that LUBAC assembles heterotypic ubiquitin chains by the concerted action of HOIP and HOIL-1L.


Assuntos
Fatores de Transcrição , Ubiquitina-Proteína Ligases , Ubiquitina , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573437

RESUMO

RNF213 is the major susceptibility factor for Moyamoya disease, a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Characterization of disease-associated mutations has been complicated by the enormous size of RNF213. Here, we present the cryo-EM structure of mouse RNF213. The structure reveals the intricate fold of the 584 kDa protein, comprising an N-terminal stalk, a dynein-like core with six ATPase units, and a multidomain E3 module. Collaboration with UbcH7, a cysteine-reactive E2, points to an unexplored ubiquitin-transfer mechanism that proceeds in a RING-independent manner. Moreover, we show that pathologic MMD mutations cluster in the composite E3 domain, likely interfering with substrate ubiquitination. In conclusion, the structure of RNF213 uncovers a distinct type of an E3 enzyme, highlighting the growing mechanistic diversity in ubiquitination cascades. Our results also provide the molecular framework for investigating the emerging role of RNF213 in lipid metabolism, hypoxia, and angiogenesis.


Moyamoya disease is a genetic disorder affecting both adults and children. It is characterized by narrowing of the blood vessels in the brain, which can lead to strokes. Moyamoya patients often have mutations in the gene for a protein called RNF213. This protein is linked to multiple processes in the body, including the development of blood vessels. Despite this, its role in Moyamoya disease is still something of a mystery. RNF213 is known to fall into two protein 'classes'. First, it is an E3 enzyme. This type of protein tags unwanted or defective proteins for disposal by the cell. Second, it is a motor protein. Motor proteins contain tiny molecular 'engines', called ATPases, that normally convert chemical energy to movement. No other human protein combines these two activities, making RNF213 unique. RNF213 is also an extremely large protein, which means it is difficult to manipulate in the laboratory and thus hard to study. Scientists still need more detailed information on RNF213's structure and chemical activity before we can understand what the mutant protein might be doing in Moyamoya disease. Ahel et al. therefore set out to make the RNF213 protein and 'dissect' it in a test tube. Electron microscopy experiments using the mouse-version of RNF213 revealed that it consisted of a single, giant molecule, folded up to form three regions with distinct structures. These were a long 'arm' at one end, a ring-shaped part in the middle, containing the ATPase 'motor', and the E3 enzyme module at the other end. Further chemical analysis showed that RNF213's ATPase and E3 modules worked in unexpected ways. Although the ATPase did resemble another well-known motor protein, in RNF213 it did not generate movement but rather appeared to act like an intricate molecular 'switch'. The E3 module of RNF213 'tagged' other molecules as expected but did not contain an additional structure that all other known E3 enzymes need to work properly. This suggests that RNF213 represents a distinct class of E3 enzymes. Biochemical tests of the mutation most commonly found in Moyamoya patients revealed that it left RNF213's overall structure, ATPase motor and E3 module intact. That is, the disease-causing mutation appeared to hinder interactions with other partner proteins, rather than disrupting RNF213 itself. By providing the first detailed molecular description of the architecture of RNF213, Ahel et al. hope that these findings will help future investigations of both this giant protein's biological role in the cell and its contribution to Moyamoya disease.


Assuntos
Adenosina Trifosfatases/genética , Doença de Moyamoya/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina/fisiologia , Adenosina Trifosfatases/química , Animais , Camundongos , Doença de Moyamoya/patologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/química
4.
Nat Commun ; 10(1): 4781, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636255

RESUMO

Myosin is a motor protein that is essential for a variety of processes ranging from intracellular transport to muscle contraction. Folding and assembly of myosin relies on a specific chaperone, UNC-45. To address its substrate-targeting mechanism, we reconstitute the interplay between Caenorhabditis elegans UNC-45 and muscle myosin MHC-B in insect cells. In addition to providing a cellular chaperone assay, the established system enabled us to produce large amounts of functional muscle myosin, as evidenced by a biochemical and structural characterization, and to directly monitor substrate binding to UNC-45. Data from in vitro and cellular chaperone assays, together with crystal structures of binding-deficient UNC-45 mutants, highlight the importance of utilizing a flexible myosin-binding domain. This so-called UCS domain can adopt discrete conformations to efficiently bind and fold substrate. Moreover, our data uncover the molecular basis of temperature-sensitive UNC-45 mutations underlying one of the most prominent motility defects in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Cristalização , Técnicas In Vitro , Insetos , Chaperonas Moleculares/genética , Mutação , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Terciária de Proteína
5.
Chembiochem ; 15(17): 2499-502, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25209675

RESUMO

The human alpha-Synuclein (αS) protein is of significant interest because of its association with Parkinson's disease and related neurodegenerative disorders. The intrinsically disordered protein (140 amino acids) is characterized by the absence of a well-defined structure in solution. It displays remarkable conformational flexibility upon macromolecular interactions, and can associate with mitochondrial membranes. Site-directed spin-labeling in combination with electron paramagnetic resonance spectroscopy enabled us to study the local binding properties of αS on artificial membranes (mimicking the inner and outer mitochondrial membranes), and to evaluate the importance of cardiolipin in this interaction. With pulsed, two-frequency, double-electron electron paramagnetic resonance (DEER) approaches, we examined, to the best of our knowledge for the first time, the conformation of αS bound to isolated mitochondria.


Assuntos
Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...